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Chapter 8 starts by discussing the 
structure of benzene because it is 
the ideal compound to use to explain 
delocalized electrons. This chapter 
also includes a discussion of 
aromaticity, so a short introduction 
to electrophilic aromatic substitution 
reactions is now included. This 
allows students to see how 
aromaticity causes benzene to 
undergo electrophilic substitution 
rather than electrophilic addition—
the reactions they have just finished 
studying.

Traditionally, electronic effects are 
taught so students can understand 
the directing effects of substituents 
on benzene rings. Now that most of 
the chemistry of benzene follows 
carbonyl chemistry, students 
need to know about electronic 
effects before they get to benzene 
chemistry (so they are better 
prepared for spectroscopy and 
carbonyl chemistry). Therefore, 
electronic effects are now discussed 
in Chapter 8 and used to teach 
students how substituents affect 
the pKa values of phenols, benzoic 
acids, and anilinium ions. Electronic 
effects are then reviewed in the 
chapter on benzene.
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The two chapters in the previous 
edition on substitution and 
elimination reactions of alkenes 
have been combined into one 
chapter. The recent compelling 
evidence showing that secondary 
alkyl halides do not undergo SN1 
solvolysis reactions has allowed this 
material to be greatly simplified, so 
now it fits nicely into one chapter.
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Chapters 13 and 14 are modular, so 
they can be covered at any time.

In addition to the more than 170 
spectroscopy problems in Chapters 
13 and 14, there are 60 additional 
spectroscopy problems in the Study 
Guide and Solutions Manual.
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The focus of the first chapter on 
carbonyl chemistry is all about 
how a tetrahedral intermediate 
partitions. If students understand 
this, then carbonyl chemistry 
becomes pretty straightforward. I 
found that the lipid materil that had 
been put into this chapter in the 
last edition detracted from the main 
message of the chapter. Therefore, 
the lipid material was removed and 
put into a new chapter exclusively 
about lipids.
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This chapter was reorganized and 
rewritten for ease of understanding.
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The guiding principle behind this book is to present organic chemistry as an exciting and vitally 
important science. To counter the impression that the study of organic chemistry consists primarily 
of memorizing a multitude of facts, I have organized this book around shared features and unifying 
concepts, while emphasizing principles that can be applied again and again. I want students to 
apply what they have learned to new settings and to learn how to reason their way to solutions. 
I also want them to see that organic chemistry is a fascinating discipline that is integral to their 
daily lives.

Preparing Students for Future Study in a  
Variety of Scientific Disciplines
This book organizes the functional groups around mechanistic similarities. When students see their 
first reaction (other than an acid–base reaction), they are told that all organic compounds can be 
divided into families and that all members of a family react in the same way. And to make things 
even easier, each family can be put into one of four groups, and all the families in a group react in 
similar ways.

“Organizing What We Know About Organic Chemistry” is a feature based on these statements. 
It lets students see where they have been and where they are going as they proceed through each 
of the four groups. It also encourages them to remember the fundamental reason behind the 
reactions of all organic compounds: electrophiles react with nucleophiles. When students finish 
studying a particular group, they are given the opportunity to review the group and understand 
why the families came to be members of that particular group. The four groups are covered in 
the following order. (However, the book is written to be modular, so they could be covered in 
any order.)

• � Group I: Compounds with carbon-carbon double and triple bonds. These compounds 
are nucleophiles and, therefore, react with electrophiles—undergoing electrophilic addition 
reactions.

• � Group II: Compounds with electron-withdrawing atoms or groups attached to sp3 
carbons. These compounds are electrophiles and, therefore, react with nucleophiles—
undergoing nucleophilic substitution and elimination reactions.

• � Group III: Carbonyl compounds. These compounds are electrophiles and, therefore, 
react with nucleophiles—undergoing nucleophilic acyl substitution, nucleophilic addition, 
and nucleophilic addition-elimination reactions. Because of the “acidity” of the a-carbon, a 
carbonyl compound can become a nucleophile and, therefore, react with electrophiles.

• � Group IV: Aromatic compounds. Some aromatic compounds are nucleophiles and, there-
fore, react with electrophiles—undergoing electrophilic aromatic substitution reactions. Other 
aromatic compounds are electrophiles and, therefore, react with nucleophiles—undergoing 
nucleophilic aromatic substitution reactions.

The organization discourages rote memorization and allows students to learn reactions based 
on their pattern of reactivity. It is only after these patterns of reactivity are understood that a deep 
understanding of organic chemistry can begin. As a result, students achieve the predictive capacity 
that is the beauty of studying science. A course that teaches students to analyze, classify, explain, 
and predict gives them a strong foundation to bring to their subsequent study of science, regardless 
of the discipline.

As students proceed through the book, they come across ~200 interest boxes that connect what 
they are studying to real life. Students don’t have to be preparing for a career in medicine to appre-
ciate a box on the experimental drug used to treat Ebola, and they don’t have to be preparing 
for a career in engineering to appreciate a box on the properties that a polymer used for dental 
impressions must have.
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The Organization Ties Together Reactivity and Synthesis
Many organic chemistry textbooks discuss the synthesis of a functional group and the reactivity 
of that group sequentially, but these two groups of reactions generally have little to do with one 
another. Instead, when I discuss a functional group’s reactivity, I cover the synthesis of compounds 
that are formed as a result of that reactivity, often by having students design syntheses. In Chapter 6, 
for example, students learn about the reactions of alkenes, but they do not learn about the synthesis 
of alkenes. Instead, they learn about the synthesis of alkyl halides, alcohols, ethers, epoxides, 
alkanes, etc.—the compounds formed when alkenes react. The synthesis of alkenes is not covered 
until the reactions of alkyl halides and alcohols are discussed—compounds whose reactions lead to 
the synthesis of alkenes.

This strategy of tying together the reactivity of a functional group and the synthesis of compounds 
resulting from its reactivity prevents the student from having to memorize lists of unrelated reactions. 
It also results in a certain economy of presentation, allowing more material to be covered in less time.

Although memorizing different ways a particular functional group can be prepared can be 
counterproductive to enjoying organic chemistry, it is useful to have such a compilation of reactions 
when designing multistep syntheses. For this reason, lists of reactions that yield a particular func-
tional group are compiled in Appendix III. In the course of learning how to design syntheses, students 
come to appreciate the importance of reactions that change the carbon skeleton of a molecule; these 
reactions are compiled in Appendix IV.

Helping Students Learn and Study Organic Chemistry
As each student generation evolves and becomes increasingly diverse, we are challenged as teachers 
to support the unique ways students acquire knowledge, study, practice, and master a subject. In 
order to support contemporary students who are often visual learners, with preferences for interac-
tivity and small “bites” of information, I have revisited this edition to make it more compatible with 
their learning style by streamlining the narrative and using organizing bullets and subheads. This 
will allow them to study more efficiently with the text.

The book is written much like a tutorial. Each section ends with a set of problems that students need 
to work through to find out if they are ready to go on to the next section, or if they need to review the 
section they thought they had just mastered. This allows the book to work well in a “flipped classroom.”

For those who teach organic chemistry after one semester of general chemistry, Chapter 5 and 
Appendix II contain material on thermodynamics and kinetics, so those topics can be taught in the 
organic course.

An enhanced art program with new and expanded annotations provides key information 
to students so that they can review important parts of the chapter with the support of the visual 
program. Margin notes throughout the book succinctly repeat key points and help students review 
important material at a glance.

Tutorials follow relevant chapters to help students master essential skills:
•  Acids and Bases
•  Using Molecular Models
•  Interconverting Structural Representations
•  Drawing Curved Arrows
•  Drawing Resonance Contributors
•  Drawing Curved Arrows in Radical Systems
•  Synthesis and Retrosynthetic analysis

MasteringChemistry includes additional online tutorials on each of these topics that can be assigned 
as homework or for test preparation.

Organizational Changes
Using the E,Z system to distinguish alkene stereoisomers was moved to Chapter 4, so now it appears 
immediately after using cis and trans to distinguish alkene stereoisomers.

Catalytic hydrogenation and the relative stabilities of alkenes was moved from Chapter 6 to 
Chapter 5 (thermodynamics), so it can be used to illustrate how ΔH° values can be used to deter-
mine relative stabilities. Moving this has another advantage—because catalytic hydrogenation is the 
only reaction of alkenes that does not have a well-defined mechanism, all the remaining reactions 
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in Chapter 6 now have well-defined mechanisms, all following the general rule that applies to all 
electrophilic addition reactions: the first step is always the addition of the electrophile to the sp2 
carbon bonded to the most hydrogens.

Chapter 8 starts by discussing the structure of benzene because it is the ideal compound to use 
to explain delocalized electrons. This chapter also includes a discussion on aromaticity, so a short 
introduction to electrophilic aromatic substitution reactions is now included. This allows students 
to see how aromaticity causes benzene to undergo electrophilic substitution rather than electrophilic 
addition—the reactions they just finished studying.

Traditionally, electronic effects are taught so students can understand the activating and directing 
effects of substituents on benzene rings. Now that most of the chemistry of benzene follows car-
bonyl chemistry, students need to know about electronic effects before they get to benzene chemis-
try (so they are better prepared for spectroscopy and carbonyl chemistry). Therefore, in this edition 
electronic effects are discussed in Chapter 8 and used to teach students how substituents affect the 
pKa values of phenols, benzoic acids, and anilinium ions. Electronic effects are then reviewed in the 
chapter on benzene.

The two chapters in the previous edition that covered the substitution and elimination reactions of 
alkyl halides have been combined into one chapter (Chapter 9). The recent compelling evidence show-
ing that alkyl halides do not undergo SN1 solvolysis reactions has allowed this material to be greatly 
simplified, so now it fits nicely into one chapter.

I have found that teaching carbonyl chemistry before the chemistry of aromatic compounds (a 
change made in the last edition) has worked well for my students. Carbonyl compounds are prob-
ably the most important organic compounds, and moving them forward gives them the prominence 
they should have. In addition, the current location of the chemistry of benzene allows it and the 
chemistry of aromatic heterocyclic compounds to be taught sequentially.

The focus of the first chapter on carbonyl chemistry should be all about how a tetrahedral inter-
mediate partitions. If students understand this, then carbonyl chemistry becomes relatively easy. I 
found that the lipid material that had been put into this chapter detracted from the main message 
of the chapter. Therefore, the lipid material was removed and put into a new chapter: The Organic 
Chemistry of Lipids. The discussion of terpenes from the metabolism chapter has also been moved 
into this chapter, and some some new material has been included.

Modularity/Spectroscopy
The book is designed to be modular, so the four groups (Group I—Chapters 6, 7, 8; 
Group II—Chapters 9 and 10; Group III—Chapters 15, 16, 17; Group IV—Chapters 18 and 19) can 
be covered in any order.

Sixty spectroscopy problems and their answers—in addition to ~170 spectroscopy problems 
in the text—can be found in the Study Guide and Solutions Manual. The spectroscopy chapters 
(Chapters 13 and 14) are written so that they can be covered at any time during the course. For those 
who prefer to teach spectroscopy before all the functional groups have been introduced—or in a 
separate laboratory course—there is a table of functional groups at the beginning of Chapter 13.

An Early and Consistent Emphasis on Organic Synthesis
Students are introduced to synthetic chemistry and retrosynthetic analysis early in the book 
(Chapters 6 and 7, respectively), so they can start designing multistep syntheses early in the course. 
Seven special sections on synthesis design, each with a different focus, are introduced at appropri-
ate intervals. There is also a tutorial on synthesis and retrosynthetic analysis that includes some 
examples of complicated multistep syntheses from the literature.

xxiv	 Preface308 CHAPTER 7  The Reactions of Alkynes • An Introduction to Multistep Synthesis

    Designing a Synthesis   
 The following examples will give you an idea of the type of thinking required to design a successful 
synthesis.  Problems of this kind will appear repeatedly throughout the book, because      s olving     them  
is fun and is a good way to learn organic chemistry. 

  Example 1 
Starting with 1-butyne, how could you make the ketone shown here? You can use any reagents you need. 

   
CH3CH2C CH3CH2CCH2CH2CH3CH

O
?

1-butyne  
 Many chemists find that the easiest way to design a synthesis is to work backward. Instead of look-
ing at the reactant and deciding how to do the first step of the synthesis, look at the product and 
decide how to do the last step. 

 The product of the synthesis is a ketone. Now you need to remember all the reactions you     have 
learned  that form a ketone.   We will use the acid-catalyzed addition of water to an alkyne. (You also 
could use hydroboration–oxidation.) If the alkyne used in the reaction has identical substituents on 
both  sp  carbons, only one ketone will be obtained. Thus, 3-hexyne is the alkyne that should be used 
for the synthesis of the desired ketone. 

   
CH3CH2C CCH2CH3 CH3CH2C CHCH2CH3 CH3CH2CCH2CH2CH3

OOH
H2O

H2SO4
3-hexyne   

 3-Hexyne can be obtained from the starting material (1-butyne) by removing the proton from its 
 sp  carbon, followed by alkylation. To produce the desired six-carbon product, a two-carbon alkyl 
halide must be used in the alkylation reaction. 

   
CH3CH2C CH CCH2CH3CH3CH2C

1. NaNH2

2. CH3CH2Br
1-butyne 3-hexyne  

 Designing a synthesis by working backward from product to reactant is not just a technique 
taught to organic chemistry students. It is used so frequently by experienced synthetic chemists that 
it has been given a name:  retrosynthetic analysis.  Chemists use open arrows when they write ret-
rosynthetic analyses to indicate they are working backward. Typically, the reagents needed to carry 
out each step are not specified until the reaction is written in the forward direction. For example, the 
ketone synthesis just discussed is arrived at by the following retrosynthetic analysis. 

   CH3CH2CCH2CH2CH3 CH3CH2C CCH2CH3 CH3CH2C CH

retrosynthetic analysis

O

 
 Once the sequence of reactions is worked out by retrosynthetic analysis, the synthetic scheme can 
be written by reversing the steps and including the reagents required for each step. 

   
CH3CH2C CH CCH2CH3CH3CH2C

1. NaNH2

2. CH3CH2Br CH3CH2CCH2CH2CH3

O
H2O

H2SO4

synthesis

 

  Example 2  
Starting with ethyne, how could you make 2-bromopentane? 

   

HC CH CH3CH2CH2CHCH3
?

ethyne

2-bromopentane
Br

 
 2-Bromopentane can be prepared from 1-pentene, which can be prepared from 1-pentyne.   1-Pentyne 
can be prepared from ethyne and an alkyl halide with three carbons. 

   NOTE TO THE STUDENT 

•   As the number of reactions that 
you know increases, you may find 
it helpful to consult  Appendix III 
 when designing syntheses; it lists 
the methods that can be used to 
synthesize each functional group.   



Problems, Solved Problems, and Problem-Solving Strategies
The book contains more than 2,000 problems, many with multiple parts. This edition has many new 
problems, both in-chapter and end-of-chapter. They include new solved problems, new problem-
solving strategies, and new problems incorporating information from more than one chapter. I keep 
a list of questions my students have when they come to office hours. Many of the new problems 
were created as a result of these questions.

The answers (and explanations, when needed) to all the problems are in the accompanying Study 
Guide/Solutions Manual, which I authored to ensure consistency in language with the text. The 
problems within each chapter are primarily drill problems. They appear at the end of each section, 
so they allow students to test themselves on material just covered before moving on to the next 
section. Short answers provided at the end of the book for problems marked with a diamond give 
students immediate feedback concerning their mastery of a skill or concept.

Selected problems are accompanied by worked-out solutions to provide insight into problem-
solving techniques, and the many Problem-Solving Strategies teach students how to approach vari-
ous kinds of problems. These skill-teaching problems are indicated by LEARN THE STRATEGY 
in the margin. These strategies are followed by one or more problems that give students the oppor-
tunity to use the strategy just learned. These problems, or the first of a group of such problems, are 
indicated in the margin by USE THE STRATEGY.

The Study Guide/Solutions Manual has a practice test at the end of each chapter and contains 
Special Topics Sections on molecular orbital theory and how to solve problems on pH, pKa, and 
buffer solutions.

Powerpoint
All the art in the text is available on PowerPoint slides. I created the PowerPoint lectures so they 
would be consistent with the language and philosophy of the text.

Students Interested in The Biological Sciences and MCAt2015

I have long believed that students who take organic chemistry also should be exposed to bioorganic 
chemistry—the organic chemistry that occurs in biological systems. Students leave their organic 
chemistry course with a solid appreciation of organic mechanism and synthesis. But when they 
take biochemistry, they will never hear about Claisen condensations, SN2 reactions, nucleophilic 
acyl substitution reactions, etc., although these are extremely important reactions in cells. Why 
are students required to take organic chemistry if they are not going to be taught how the organic 
chemistry they learn repeats itself in the biological world?

Now that the MCAT is focusing almost exclusively on the organic chemistry of living systems, 
it is even more important that we provide our students with the “bioorganic bridge”—the material 
that provides the bridge between organic chemistry and biochemistry. Students should see that 
the organic reactions that chemists carry out in the laboratory are in many ways the same as those 
performed by nature inside a cell.

The seven chapters (Chapters 20–26) that focus primarily on the organic chemistry of living 
systems emphasize the connection between the organic reactions that occur in the laboratory and 
those that occur in cells.

Each organic reaction that occurs in a cell is explicitly compared  
to the organic reaction with which the student is already familiar.

For example, the first step in glycolysis is an SN2 reaction, the second step is identical to the 
enediol rearrangement that students learn when they study carbohydrate chemistry, the third 
step is another SN2 reaction, the fourth step is a reverse aldol addition, and so on. The first step 
in the citric acid cycle is an aldol addition followed by a nucleophilic acyl substitution reaction, 
the second step is an E2 dehydration followed by the conjugate addition of water, the third step 
is oxidation of a secondary alcohol followed by decarboxylation of a 3-oxocarboxylate ion, 
and so on.

We teach students about halide and sulfonate leaving groups. Adding phosphate leaving groups 
takes little additional time but introduces the students to valuable information if they are going on 
to study biochemistry.
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Students who study organic chemistry learn about tautomerization and imine hydrolysis, and 
students who study biochemistry learn that DNA has thymine bases in place of the uracil bases in 
RNA. But how many of these students are ever told that the reason for the difference in the bases in 
DNA and RNA is tautomerization and imine hydrolysis?

Colleagues have asked how they can find time to fit the “bioorganic bridge” into their organic 
chemistry courses. I found that tying together reactivity and synthesis (see p. xxiii) frees up a lot 
of time. (This is the organization I adopted many years ago when I was trying to figure out how to 
incorporate the bioorganic bridge into my course.) And if you find that this still does not give you 
enough time, I have organized the book in a way that allows some “traditional” chapters to be omit-
ted (Chapters 12, 18, 19, and 28), so students can be prepared for biochemistry and/or the MCAT 
without sacrificing the rigor of the organic course.	         	     	     	   

The Bioorganic Bridge
Bioorganic chemistry is found throughout the text to show students that organic chemistry and bio-
chemistry are not separate entities but rather are closely related on a continuum of knowledge. Once 
students learn how, for example, electron delocalization, leaving-group propensity, electrophilicity, 
and nucleophilicity affect the reactions of simple organic compounds, they can appreciate how these 
same factors influence the reactions of organic compounds in cells.

In Chapters 1–19, the bioorganic material is limited mostly to “interest boxes” and to the last 
sections of the chapters. Thus, the material is available to the curious student without requiring the 
instructor to introduce bioorganic topics into the course. For example, after hydrogen bonding is 
introduced in Chapter 3, hydrogen boding in proteins in DNA is discussed; after catalysis is intro-
duced in Chapter 5, catalysis by enzymes is discussed; after the stereochemistry of organic reactions 
is presented in Chapter 6, the stereochemistry of enzyme-catalyzed reactions is discussed; after 
sulfonium ions are discussed in Chapter 10, a biological methylation reaction using a sulfonium 
ion is examined and the reason for the use of different methylating agents by chemists and cells is 
explained; after the methods chemists use to activate carboxylic acids are presented (by giving them 
halide or anhydride leaving groups) in Chapter 15, the methods cells use to activate these same acids 
are explained (by giving them phosphoanhydride, pyrophosphate, or thiol leaving groups); and after 
condensation reactions are discussed in Chapter 17, the mechanisms of some biological condensa-
tion reactions are shown.

In addition, seven chapters in the last part of the book (Chapters 20–26) focus on the organic 
chemistry of living systems. These chapters have the unique distinction of containing more chem-
istry than is typically found in the corresponding parts of a biochemistry text. Chapter 22 (Catalysis 
in Organic Reactions and in Enzymatic Reactions), for example, explains the various modes of 
catalysis employed in organic reactions and then shows that they are identical to the modes of 
catalysis found in reactions catalyzed by enzymes. All of this is presented in a way that allows 
students to understand the lightning-fast rates of enzymatic reactions. Chapter 23 (The Organic 
Chemistry of the Coenzymes, Compounds Derived from Vitamins) emphasizes the role of vitamin 
B1 in electron delocalization, vitamin K as a strong base, vitamin B12 as a radical initiator, biotin as 
a compound that transfers a carboxyl group by means of a nucleophilic acyl substitution reaction, 
and describes how the many different reactions of vitamin B6 have common mechanisms—with 
the first step always being imine formation. Chapter 24 (The Organic Chemistry of Metabolic 
Pathways) explains the chemical function of ATP and shows students that the reactions encoun-
tered in metabolism are just additional examples of reactions that they already have mastered. In 
Chapter 26 (The Chemistry of the Nucleic Acids), students learn that 2′-OH group on the ribose 
molecules in RNA catalyzes its hydrolysis and that is why DNA, which has to stay intact for the 
life of the cell, does not have 2′-OH groups. Students also see that the synthesis of proteins in cells 
is just another example of a nucleophilic acyl substitution reaction. Thus, these chapters do not 
replicate what will be covered in a biochemistry course; they provide a bridge between the two 
disciplines, allowing students to see how the organic chemistry that they have learned is repeated 
in the biological world.
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ENGAGING MIXED SCIENCE MAJORS  
IN ORGANIC CHEMISTRY
Students better understand the relevance of what they’re 
studying by seeing the connections between the reactions 
of organic compounds that occur in the laboratory and those 
that occur in a cell. Changes throughout this edition provide 
students with this much-needed “bioorganic bridge,” while 
maintaining the rigor of the traditional organic course.

For example, we teach students about halide and sul-
fonate leaving groups. Adding phosphate leaving groups 
takes little additional time, but it introduces students to 
valuable information, particularly if they are taking organic 
chemistry because of an interest in the biological sciences. 
Students who are studying organic chemistry learn about 
tautomerization and imine hydrolysis, and students study-
ing biochemistry learn that DNA has thymine bases in place 
of the uracil bases in RNA. But how many of these students 
are ever told that the reason for the difference in the bases 
in DNA and RNA is tautomerization and imine hydrolysis?

 26.10 Why DNA Contains Thymine Instead of Uracil  19

    PROBLEM   12    ♦   

  A change in which base of a codon is least likely to damage a protein?   

    PROBLEM   13    ♦   

  Write the sequences of bases in the sense strand of DNA that resulted in the mRNA in   Problem   9  .   

    PROBLEM   14   

  List the possible codons on mRNA that specify each amino acid in   Problem   9   and the anticodon on the 
tRN

26. 10     WHY DNA CONTAINS THYMINE INSTEAD 
OF URACIL   

In   Section   23.7   we saw that  dTMP is formed by methylating dUMP, with coenzyme  N  5 , N  10 -
methylenetetrahydrofolate supplying the methyl group. 

N

 2 -deoxyribose-5-P

HN + N5,N10-methylene-THF + dihydrofolate

thymidylate
synthase

O

O

N

HN

O

CH3

O

 Because the incorporation of the methyl group into uracil oxidizes tetrahydrofolate to dihydrofo-
late, dihydrofolate must be reduced back to tetrahydrofolate to prepare the coenzyme for another 
catalytic reaction. The reducing agent is NADPH. 

   +tetrahydrofolate NADP++dihydrofolate NADPH + H+
dihydrofolate

reductase
 

 The NADP +  formed in this reaction has to be reduced back to NADPH by NADH. Every NADH 
formed in a cell can result in the formation of 2.5 ATPs  (  Section   24.10  ) . Therefore, reducing dihy-
drofolate comes at the expense of ATP. This means that the synthesis of thymine is energetically 
expensive, so there must be a good reason for DNA to contain thymine instead of uracil. 

 The presence of thymine instead of uracil in DNA prevents potentially lethal mutations. Cytosine 
can tautomerize to form an imine  (  Section   17.2  ) , which can be hydrolyzed to uracil  (  Section   16.8  ) . 
The overall reaction is called a  deamination  because it removes an amino group. 

   

tautomerization

imino tautomer

N

O

NH2

N
H

N
H

N
H

HN + NH3
H2O

O

NH

HN

O

O

cytosine
amino tautomer

uracil

deamination

 

 If a C in DNA is deaminated to a U, the U will specify incorporation of an A into the daughter 
strand during replication instead of the G that would have been specified by C, and all the progeny 
of the daughter strand would have the same mutated chromosome. Fortunately, there is an enzyme 
that recognizes a U in DNA as a “mistake” and replaces it with a C before an incorrect base can be 
inserted into the daughter strand. The enzyme cuts out the U and replaces it with a C. If Us were 
normally found in DNA, the enzyme would not be able to distinguish between a normal U and a U 
formed by deamination of a cytosine. Having Ts in place of Us in DNA allows the Us that are found 
in DNA to be recognized as mistakes. 

 26.13 Genetic Engineering  1177

26. 13   GENETIC ENGINEERING   
Genetic engineering  (also called genetic modification) is the insertion of a segment of DNA into 
the DNA of a host cell so that the segment of DNA is replicated by the DNA-synthesizing machin-
ery of the host cell. Genetic engineering has many practical applications. For example, replicating 
the DNA that codes for human insulin makes it possible to synthesize large amounts of the protein, 
eliminating the dependence on pigs for insulin and helping those who are allergic to pig insulin. 
Recall that pig insulin differs from human insulin by one amino acid  (  Section   21.8  ) . 

 Agriculture is benefiting from genetic engineering. Crops are now being produced with new 
genes that increase their resistance to drought and insects. For example, genetically engineered 
cotton crops are resistant to the cotton bollworm, and genetically engineered corn is resistant to the 
corn rootworm. Genetically modified organisms (GMOs) have been responsible for a nearly 50% 
reduction in the use of chemicals for agricultural purposes in the United States. Recently, corn has 
been genetically modified to boost ethanol production, apples have been genetically modified to 
prevent them from turning brown when they are cut, and soybeans have been genetically modified 
to prevent trans fats from being formed when soybean oil is hydrogenated  (  Section   5.9  ) . 

    Resisting Herbicides   

 Glyphosate, the active ingredient in a well-known herbicide called Roundup, kills weeds by inhib-
iting an enzyme that plants need to synthesize phenylalanine and tryptophan, amino acids they 
require for growth. Corn and cotton have been genetically engineered to tolerate the herbicide. 
Then, when fields are sprayed with glyphosate, the weeds are killed but not the crops. 

 These crops have been given a gene that produces an enzyme that uses acetyl-CoA to acety-
late glyphosate in a nucleophilic acyl substitution reaction  (  Section   15.11  ) . Unlike glyphosphate, 
N -acetylglyphosphate does not inhibit the enzyme that synthesizes phenylalanine and tryptophan. 

glyphosate
an herbicide

O O

O−

C P
enzyme

NH−O O−

N-acetylglyphosate
harmless to plants

acetyl-CoA

O O
O

C

O−

C PN−O O−+

O

C
CH3

+ CoASH

CH3

SCoA

  

  
   corn genetically engineered to resist the herbicide 

glyphosate by acetylating it   

    Using Genetic Engineering to Treat the Ebola Virus   

  Plants have long been a source of drugs—morphine, ephedrine, and codeine are just a few examples  (  Section   10.9  ) . 
Now scientists are attempting to obtain drugs from plants by biopharming. Biopharming uses genetic engineering 
techniques to produce drugs in crops such as corn, rice, tomatoes, and tobacco. To date, the only biopharmed drug 
approved by the Food and Drug Administration (FDA) is one that is manufactured in carrots and used to treat Gau-
cher’s disease. 

 An experimental drug that was used to treat a handful of patients with Ebola, the virus that was spread-
ing throughout West Africa, was obtained from genetically engineered tobacco plants. The tobacco plants 
were infected with three genetically engineered plant viruses that are harmless to  humans and animals 
but have structures similar to that of the Ebola virus. As a result of being infected, the plants produced 
antibodies to the  viruses. The antibodies were isolated from the plants, purified, and then used to treat the 
patients with Ebola. 

 The experimental drug had been tested in 18 monkeys who had been exposed to a lethal dose of Ebola. 
All 18 monkeys survived, whereas the three monkeys in the control group died. Typically, drugs go through 
 rigorous testing on healthy humans prior to being administered to infected  patients  (see page 290) . In the 
Ebola case, the FDA made an exception because it feared that the drug might be these patients’ only hope. 
Five of the seven people given the drug survived. Currently, it takes about 50 kilograms of tobacco leaves and 
about 4 to 6 months to produce enough drug to treat one patient.    

  
   tobacco plants   

More Applications Than Any Other Organic Text
NEW! and Updated Application boxes connect the discussion to medical, environmental, biologi-
cal, pharmaceutical, nutritional, chemical, industrial, historical, and general applications and allow 
students to relate the material to real life and to potential future careers.
392 CHAPTER 9  Substitution and Elimination Reactions of Alkyl Halides

 This chapter focuses on the  substitution and elimination reactions  of alkyl halides—compounds 
in which the leaving group is a halide ion ( F- ,  Cl- ,  Br- , or  I- ). 

    

alkyl halides

alkyl fluoride
R F

alkyl chloride
R Cl

alkyl bromide
R Br

alkyl iodide
R I

 

 Alkyl halides are a good family of compounds with which to start the study of substitution and 
elimination reactions because they have relatively good leaving groups; that is, the halide ions are 
easily displaced.  After learning about the reactions of alkyl halides, you will be prepared to move on 
to    Chapter   10  , which discusses the substitution and elimination reactions of compounds with poorer 
leaving groups (those that are more difficult to displace) as well as a few with better leaving groups.  

 Substitution and elimination reactions are important in organic chemistry because they make it 
possible to convert readily available alkyl halides into a wide variety of other compounds. These 
reactions are also important in the cells of plants and animals. We will see, however, that because 
cells exist in predominantly aqueous environments and alkyl halides are insoluble in water, biologi-
cal systems use compounds in which the group that is replaced is more polar than a halogen and, 
therefore, more water soluble (Section 10.12).     

   The Birth of the Environmental Movement   

 Alkyl halides have been used as insecticides since 1939, when it was discovered that DDT (first 
synthesized in 1874) has a high toxicity to insects and a relatively low toxicity to mammals. DDT 
was used widely in World War II to control typhus and malaria in both the military and civilian popu-
lations. It saved millions of lives, but no one realized at that time that, because it is a very stable 
compound, it is resistant to biodegradation. In addition, DDT and DDE, a compound formed as a 
result of elimination of HCl from DDT, are not water soluble. Therefore, they accumulate in the fatty 
tissues of birds and fish and can be passed up the food chain. Most older adults have a low concen-
tration of DDT or DDE in their bodies. 

 In 1962, Rachel Carson, a marine biologist, published  Silent Spring,  where she pointed out 
the environmental impacts of the widespread use of DDT. The book was widely read, so it brought 
the problem of environmental pollution to the attention of the general public for the first time. 
 Consequently, its publication was an important event in the birth of the environmental movement. 
Because of the concern it raised, DDT was banned in the United States in 1972. In 2004, the 
Stockholm Convention banned the worldwide use of DDT except for the control of malaria in coun-
tries where the disease is a major health problem. 

  In    Section   12.12  , we will look at the environmental effects caused by synthetic alkyl halides 
known as  chlorofluorohydrocarbons (CFCs).    

  

PROBLEM 1 

 PROBLEM   2   

 Methoxychlor is an insecticide that was intended to take DDT’s place because it is not as soluble in fatty 
tissues and is more readily biodegradable. It, too, can accumulate in the environment, however, so its use 
was also banned—in 2002 in the European Union and in 2003 in the United States. Why is methoxychlor 
less soluble in fatty tissues than DDT?     

OO
methoxychlor

  
Cl

Cl
Cl

Cl

Cl
DDT



GUIDED APPROACH TO PROBLEM SOLVING
Essential Skill Tutorials
These tutorials guide students through some of the topics in  organic 
chemistry that they typically find to be the most challenging. They provide 
concise explanations, related problem-solving opportunities, and answers for 
self-check. The print tutorials are paired with MasteringChemistry online 
tutorials. These are additional problem sets that can be assigned as homework 
or as test preparation.
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 19.8 Organizing What We Know about the Reactions of Organic Compounds  

19. 8 ORGANIZING WHAT WE KNOW ABOUT THE 
REACTIONS OF ORGANIC COMPOUNDS   
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Halo-substituted benzenes 
and halo-substituted 
pyridines are electrophiles.

They undergo nucleophilic 
aromatic substitution 
reactions.

These are nucleophiles.

They undergo electrophilic
aromatic substitution
reactions.

These are electrophiles.

They undergo nucleophilic
acyl substitution reactions,
nucleophilic addition
reactions, or nucleophilic 
addition–elimination 
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from an A-carbon forms
a nucleophile that can
react with electrophiles.
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They undergo nucleophilic
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We saw that t    he families of organic compounds can be put in one of four groups, and  that  all the 
families in a group react in similar ways.  Now that we have finished studying the families in Group IV, 
l    et’s review how these compounds react. 

All the compounds in Group IV are aromatic. To preserve the aromaticity of the rings, these 

  

   Porphyrin, Bilirubin, and Jaundice   

 The average human body breaks down about 6 g of hemoglobin each day. The protein portion (globin) and the iron are 
reutilized, but the porphyrin ring is cleaved between the A and B rings to form a linear tetrapyrrole called biliverdin 
(a green compound). Then the bridge between the C and D ring is reduced, forming bilirubin (a red-orange 
compound). You can witness heme degradation by observing the changing colors of a bruise. 

 Enzymes in the large intestine reduce bilirubin to urobilinogen (a colorless compound). Some urobilinogen is trans-
ported to the kidney, where it is oxidized to urobilin (a yellow compound). This is the compound that gives urine its 
characteristic color.  

 If more bilirubin is formed than can be metabolized and excreted by the liver, it accumulates in the blood. When 
its concentration there reaches a certain level, it diffuses into the tissues, giving them a yellow appearance. This 
condition is known as jaundice. 

225

ESSENTIAL SKILL TUTORIAL

   DRAWING CURVED ARROWS   
This is an extension of what you learned about drawing curved arrows     on  pp. 199 – 201  . Working 
through these problems will take only a little of your time. It will be time well spent, however, 
because  curved arrows are used throughout the book and  it is important that you are comfortable 
with them.  (You will not encounter some of the reaction steps shown in this exercise for weeks or 
even months, so don’t worry about why the chemical changes take place.)  

 Chemists use curved arrows to show how electrons move as covalent bonds break and/or new 
covalent bonds form. 

    ■  Each arrow represents the simultaneous movement of two electrons (an electron pair) from a 
nucleophile (at the tail of the arrow) toward an electrophile (at the point of the arrow).  

   ■  The tail of the arrow is positioned where the electrons are in the reactant; the tail always starts 
at a lone pair or at a bond.  

  ■ The head of the arrow points to where these same electrons end up in the product; the arrow 
always points at an atom or at a bond.   

 In the following reaction step, the bond between bromine and a carbon of the cyclohexane ring 
breaks and both electrons in the bond end up with bromine. Thus,  the arrow starts at the elec-
trons that carbon and bromine share in the reactant , and  the head of the arrow points at 
bromine  because this is where the two electrons end up in the product. 

   
+Br Br−+

 

 Notice that the carbon of the cyclohexane ring is positively charged in the product. This is because 
it has lost the two electrons it was sharing with bromine. The bromine is negatively charged in the 
product because it has gained the electrons that it shared with carbon in the reactant. The fact that 
two electrons move in this example is indicated by the two barbs on the arrowhead. 

 Notice that the arrow  always  starts at a bond or at a lone pair. It does  not  start at a negative 
charge. 

   

CH3CHCH3CH3CHCH3 + Cl−

Cl

+

 

 In the following reaction step, a bond is being formed between the oxygen of water and a carbon 
of the other reactant. The arrow starts at one of the lone pairs of the oxygen and points at the atom 
(the carbon) that will share the electrons in the product. The oxygen in the product is positively 
charged, because the electrons that oxygen had to itself in the reactant are now being shared 
with carbon. The carbon that was positively charged in the reactant is not charged in the product, 
because it has gained a share in a pair of electrons. 

   

CH3CHCH3CH3CHCH3 +
+

+
H2O

OH
H  

    PROBLEM   1      Draw curved arrows to show the movement of the electrons in the following reac-
tion steps. (The answers to all problems appear immediately after   Problem    10  .) 

Cl

Br Br
−

+

+a. CH3CH2C

CH3

CH3

CH3CH2C+

CH3

CH3
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−+b.

Enhanced by 

 

TUTORIAL
ESSENTIAL SKILL

Organizing What We Know About the Reactivity of Organic Compounds
This organization emphasizes the unifying principles of reactivity and offers  
an economy of presentation while discouraging memorization. Students learn that

• � organic compounds can be classified 
into families and that all members of a 
family react in the same way.

• � the families can be put into one of four 
groups and that all the family mem-
bers in a group react in similar ways.

The Organizing What We Know table builds 
as students work sequentially through the 
four groups.

  Group I: �electrophilic addition 
reactions

  Group II: �nucleophilic substitution 
reactions and elimination 
reactions

�Group III: �nucleophilic acyl substitution  
reactions, nucleophilic addi-
tion reactions, and nucleo-
philic addition–elimination 
reactions

Group IV: �electrophilic (and 
nucleophilic) aromatic 
substitution reactions



	 Preface    xxix

Emphasis on the Strategies Needed to Solve Problems and Master Content  
Passages explaining important problem-solving 
strategies are clearly labeled with a LEARN THE 
STRATEGY label. Follow-up problems that require 
students to apply the just-learned strategy are 
labeled with a USE THE STRATEGY label. These 
labels, which are implemented throughout the text, 
allow students to easily find important content and 
practice its use.

Designing a Synthesis 
This recurring feature helps students 
learn to design multi-step syntheses and 
facilitates the development of complex 
problem-solving skills. Many problems 
include the synthesis of well-known 
compounds such as Novocain®, 
Valium®, and Ketoprofen®.

836 CHAPTER 17  Reactions at the a-Carbon

    PROBLEM   42    SOLVED   

  Starting with methyl propanoate, how could you prepare 4-methyl-3-heptanone? 

   

methyl propanoate

4-methyl-3-heptanone

?

CH3

O

CH3CH2 OCH3

C

O

CH3CH2 CHCH2CH2CH3

C

 
 Because the starting material is an ester and the target molecule has more carbons than the starting material, 
a Claisen condensation appears to be a good way to start this synthesis. The Claisen condensation forms a 
 b -keto ester that can be easily alkylated at the desired carbon because it is flanked by two carbonyl groups. 
Acid-catalyzed hydrolysis forms a 3-oxocarboxylic acid that decarboxylates when heated. 

DESIGNING A 
SYNTHESIS V 17. 20    

 When planning the synthesis of a compound that requires the formation of a new carbon–
carbon bond: 

■  locate the new bond that needs to be made and perform a disconnection—that is, break the 
bond to produce two fragments.  

■  determine which of the atoms that will form the new bond should be the electrophile and 
which should be the nucleophile.  

■  choose a compound with the desired electrophilic and nucleophilic groups.   

    Example 1     
 The new bond that needs to be made in the synthesis of the following  b -diketone is the one that 
makes the second five-membered ring: 

    

O
O

O

OH

O
H3C

H3C

H3C

H3C

new bond

?

 
 It is easy to choose between the two possibilities for the electrophile and nucleophile because we 
know that a carbonyl carbon is an electrophile. 

   

H3C

H3C

H3C

H3C
or

O
O

+
−

O
O

+ −

nucleophile

electrophile

electrophile

nucleophile  

   

Δ

1. CH3O−

2. H3O+ 
1. CH3O−

2. CH3CH2CH2Br 

HCl, H2O

Δ

O

CH3CH2 OCH3

C

CH3

O

CH3CH2 CH

CH3

C

O

OCH3

C

O

CH3CH2

C

CH3 CH2CH2CH3

C

O

OCH3

C

O

CH3CH2

C

CH3 CH2CH2CH3

C

O

OH
C

O

CH3CH2 CHCH2CH2CH3

C

    

696 CHAPTER 15  Reactions of Carboxylic Acids and Carboxylic Acid Derivatives

acyl  substitution reaction is the  p  bond, so this bond breaks first and the leaving group is eliminated 
in a subsequent step. 

   an SN2 reaction
CH3CH2 + Z−Y CH3CH2 + Y−Z

 

   PROBLEM-SOLVING STRATEGY  

  Using Basicity to Predict the Outcome of a Nucleophilic Acyl Substitution Reaction  

 What is the product of the reaction of acetyl chloride with  CH3O
-?  The p K  a  of HCl is  –7 ; the p K  a  of 

CH 3 OH is 15.5. 

 To identify the product of the reaction, we need to compare the basicities of the two groups in the tetra-
hedral intermediate so we can determine which one will be eliminated. Because HCl is a stronger acid than 
CH 3 OH, Cl −  is a weaker base than CH 3 O − . Therefore, Cl −  is eliminated from the tetrahedral intermediate 
and methyl acetate is the product of the reaction. 

   

CH3+ +
CH3

CH3O−

Cl
C

O

CH3 OCH3

C

O

C Cl Cl−

O−

acetyl chloride
OCH3

methyl acetate   

LEARN THE STRATEGY

15. 5     THE RELATIVE REACTIVITIES OF CARBOXYLIC 
ACIDS AND CARBOXYLIC ACID DERIVATIVES   

 We just saw that there are two steps in a nucleophilic acyl substitutions reaction:  formation  of a 
tetrahedral intermediate and  collapse  of the tetrahedral intermediate. The weaker the base attached 
to the acyl group (  Table    15 .1  ), the easier it is for  both steps  of the reaction to take place. 

   
Cl− < <≈−OR −NH2

−OH

relative basicities of the leaving groups

weakest
base

strongest
base  

 Therefore, carboxylic acid derivatives have the following relative reactivities: 

   

> >≈

relative reactivities of carboxylic acid derivatives

carboxylic acid
R OH
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R NH2

acyl chloride ester
R OR′most
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R Cl
C

O

C

O

C

O

C

O

 

    PROBLEM   7    ♦   

    a.  What is the product of the reaction of acetyl chloride with HO - ? The p K  a  of HCl is -7; the p K  a  of H 2 O is 15.7.  
   b.  What is the product of the reaction of acetamide with HO - ? The p K  a  of NH 3  is 36; the p K  a  of H 2 O is 15.7.       

    PROBLEM   8    ♦   

 What is the product of an acyl substitution reaction—a new carboxylic acid derivative, a mixture of two 
 carboxylic acid derivatives, or no reaction—if the new group in the tetrahedral intermediate is the following? 

    a.  a stronger base than the substituent that is attached to the acyl group  
   b.  a weaker base than the substituent that is attached to the acyl group  
   c.  similar in basicity to the substituent that is attached to the acyl group      

USE THE STRATEGY

 17.20 Making New Carbon–Carbon Bonds  837

 If we know what the starting material is, we can use it as a clue to arrive at the desired compound. 
For example, an ester carbonyl group would be a good electrophile for this synthesis because it has 
a group that would be eliminated. Moreover, the  a -hydrogens of the ketone are more acidic than 
the  a -hydrogens of the ester, so the desired nucleophile would be easy to obtain. Thus, converting 
the starting material to an ester  (  Section   15.18  ) , followed by an intramolecular condensation, forms 
the target molecule. 

H3C

H3C
1. SOCl2 1. CH3O−

2. H3O+2. CH3OH
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     Example   2   
  In this example, two new carbon–carbon bonds must be formed. 

   

CH3O OCH3
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CH3O OCH3
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?

new bondnew bond  

After identifying the electrophilic and nucleophilic sites, we see that two successive alkylations of 
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2. Br Br

O O O O
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    Example   3  
  The diester given as the starting material suggests that a Dieckmann condensation should be used 
to obtain the cyclic compound: 

   
O

OO

CH3CH2

OO

CH3OC

nucleophile

electrophilenew bond

? +
−CH3O

OCH3

  

 The Dieckmann condensation is followed by alkylation of the  a -carbon (that is flanked by two 
carbonyl groups) of the cyclopentanone ring. Hydrolysis of the  b -keto ester and decarboxylation 
forms the target molecule. 
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